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Abstract
Drought may have severe societal, economic, and environmental consequences.

However, the space–time characteristics of drought over Vietnam remain poorly

understood. In this study, we investigate the spatio-temporal variability of drought

using the Palmer Drought Severity Index (PDSI) over mainland Vietnam for the

1980–2014 period. Through data analysis at 131 stations, we identified the main

characteristics, historical trends, and dominant variability of drought across seven cli-

matic sub-regions in Vietnam. The results show regional patterns of drought dura-

tion, inter-arrival time, frequency, and severity, but no consistent trend of drought

variation during the study period. Based on the supply and demand concepts of water

balance, PDSI captures well the large frequency and severity of drought in some

sub-regions that are related to soil moisture deficit associated with high temperature

and low rainfall during summer. Moreover, drought over Vietnam was predomi-

nantly controlled by climate seasonality. The linkages between drought in Vietnam

and large-scale drivers are quite different among areas, suggesting a possibility of

early prediction for drought at some sub-regions using ENSO.
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1 | INTRODUCTION

Drought is a fundamental and recurring extreme climate event
over terrestrial land that often causes immense damage to
agriculture, environment, and societies (WMO, 2006). It
remains the costliest and major natural disaster which affects
a very large number of people across the globe every year
(Wilhite, 2000). Unlike other natural hazards (i.e., flood,
storms, earthquakes, tornadoes, etc.), drought events often
develop slowly and unnoticed and have diverse consequences
on terrestrial ecosystems (Van Loon, 2015). Drought is gener-
ally classified into four types: meteorological, soil moisture or
agricultural, hydrological, and socioeconomic droughts
(Wilhite and Glantz, 1985; AMS, 2004; Mishra and Singh,
2010). Among these types, meteorological drought is the most
prevalent and important since it often acts as the starting
points of the others. Meteorological drought is identified by

precipitation deficits, possibly combined with increased
potential evapotranspiration (ET), over a region for a period
of time (WMO, 2006). It can last for a wide range of temporal
scales and its spatial extent is usually larger than that of other
natural hazards. As a result, meteorological drought may vary
significantly from one region to another due to the heteroge-
neity in the landscape and climatic conditions.

Drought events are often characterized by multiple charac-
teristics (Dracup et al., 1980; Ge et al., 2016), including dura-
tion, inter-arrival time, peak intensity, frequency, and
severity. Each of these characteristics may impact environ-
ment in very different ways. For instance, severe droughts,
even in short durations, would have a catastrophic impact on
agriculture during the growth stages of the crops (Rippey,
2015). In contrast, mild and moderate droughts with long
durations would have devastating consequences on ecosys-
tems and water supply (AghaKouchak, 2015). Moreover, the
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variability of the inter-arrival time also affects the resilience
and recovery of ecosystems under drought conditions
(Schwalm et al., 2017).

Given a heavy dependence on the frequency, intensity,
and timing of drought for sustainable agriculture and water
resources management, changes in these characteristics could
pose serious threats on economics, ecology, and society.
Much research has thus been made in documenting the
observed changes in drought characteristics over Vietnam
(Tran, 2012; Vu-Thanh et al., 2014; Vu et al., 2015; Le et al.,
2016; Vu and Mishra, 2016; Vu et al., 2017). Nevertheless,
most of these studies have primarily focused on rainfall vari-
ability (i.e., the Standardized Precipitation Index—SPI) or
both rainfall and temperature (i.e., the Peday's index - PED,
de Martonne index—J, and Standardized Precipitation Evapo-
transpiration Index—SPEI), and little is known about the
effects of soil water balance on drought and how their combi-
nations with evapotranspiration (ET) exacerbate the impacts
of drought events. In fact, the state of soil moisture signifying
water deficit is controlled by not only precipitation deficit but
also excess ET (Lima and AghaKouchak, 2017). In addition,
previous studies have shown that univariate risk assessment
methods using rainfall only may underestimate the risk of
extreme drought events (AghaKouchak et al., 2014; Shukla
et al., 2015). In this sense, a multivariate approach such as the
Palmer Drought Severity Index (PDSI; see Palmer (1965)) is
therefore necessary to provide a more realistic assessment,
especially under the context of global warming.

The PDSI and its self-calibrating variants are among the
most prominent indices of meteorological drought and have
been pervasively used to make quantification of drought's
severity globally (Dai et al., 2004; Sheffield et al., 2012) and
across different climates (Lloyd-Hughes and Saunders, 2002;
Xukai et al., 2005; van der Schrier et al., 2006; Ge et al.,
2016; Li et al., 2017; Lima and AghaKouchak, 2017). Unlike
many other drought indices that are purely based on rainfall,
PDSI is constructed based upon a primitive and simple bucket
water balance model. It is calculated by integrating rainfall,
temperature and soil-water holding capacity to estimate a
local water balance and define moisture stress (Wells et al.,
2004). The PDSI is thus capable of capturing the effect of sur-
face warming on drought that has occurred since the 20th cen-
tury. Because PDSI is normalized on the basis of local
average moisture conditions, it facilitates the quantitative
comparison of drought incidence across different times and
locations (Cook et al., 2015) and is able to capture extreme
events at frequencies expected for rare conditions.

Characterizing the variability and trends of drought is of pri-
mary importance for developing appropriate drought mitigation
strategies. This characterization is often based on multiple
drought characteristics (Dracup et al., 1980; Zargar et al.,
2011; Saghafian and Mehdikhani, 2014; Ge et al., 2016).

Nevertheless, most of drought studies in Vietnam have only
focused on the probability and frequency of drought occur-
rence, and none has addressed other important characteristics
of drought events. This study attempts to bring out compre-
hensive aspects and valid evidences of drought across Viet-
nam. Here, we aim to develop understanding and analyse the
trends of drought characteristics in the mainland Vietnam
using PDSI. Specifically, we identify continuous changes in
the space–time variation patterns of drought events across
Vietnam during the 1980–2014 period. We next employ a
multivariate approach for extracting the dominant variability
of drought in the study area. Then, the relationships between
occurrences of drought and large-scale circulation characteris-
tics are analysed. Our hypothesis is that precipitation and tem-
perature in Vietnam that control the variability of drought
patterns are influenced by both local climate seasonality and
large-scale drivers. This study for the first time presents the
spatio-temporal dynamics of droughts in Vietnam as informed
by the PDSI. The rest of the paper is organized as follows. In
the next section, we describe the methods and datasets used in
this study, followed by a description of drought indices and
characteristics. The space–time variability patterns and
changes of droughts are then presented in Section 3. In this
section, we discuss seasonal and interannual variability,
regional patterns, and trends of PDSI and its linkages with
large-scale drivers. Finally, a summary is given in Section 4.

2 | MATERIALS AND METHODS

2.1 | Study area

We performed the study for the entire mainland Vietnam.
Located along the east coast of the Indochina peninsula (8o–
23oN and 102�−110�E), mainland Vietnam is in the inter-
tropical zone of the Northern Hemisphere, having a long
coastline of more than 3,000 km (Figure 1). It has a tropical
climate modulated by the Asian monsoon systems: (i) the
northeasterly monsoon in the winter (November–April) and
(ii) the southwesterly monsoon in the summer (May–
October), in which April–May and October–November are
the transitional months between the seasons. There are two
primary high mountain ranges whose directions that are
almost orthogonal to the prevailing wind, namely Hoang
Lien Son in the north and Truong Son along the west border
of Vietnam, respectively. The spatial classification of cli-
mate in Vietnam is complicated as a result of monsoon influ-
ence, heterogeneous topography, and latitudinal extent. For
this reason, the climate of Vietnam is divided into seven
sub-regions as usual for analyses (Phan et al., 2009; Mai
et al., 2014; Vu-Thanh et al., 2014): Northwest (R1), North-
east (R2), Red River Delta (R3), North Central (R4), South
Central (R5), Central High- land (R6), and Southern (R7).
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2.2 | Drought index

We used the well-known PDSI (Palmer, 1965) to investigate
drought conditions. The classification of PDSI drought
severity is presented in Table 1. Here, we considered two
combined categories of PDSI for analyses:

Cj≔
[4

i= j

Di : j= 2,3f g, ð1Þ

in which Di represents the severity of the Palmer classifica-
tion. Note that, by definition, C3 � C2. Readers are referred
to previous studies for the mathematical foundations of

PDSI and its self-calibrating variants (Palmer, 1965; Alley,
1984; Karl, 1986; Wells et al., 2004; Dai, 2010). The
Thornthwaite method (Thornthwaite and Mather, 1955) is
used to estimate PET for calculation of PDSI.

2.3 | Data

Observations of climatic variables and soil water-holding
capacity data were used as input for the calculation of
PDSI. Particularly, climatic datasets consisted of monthly
precipitation and 2-m air temperature observations for the
period 1980–2014 obtained from 131 meteorological sta-
tions across mainland Vietnam (see Figure 1). The study is
limited to this period because long-term meteorologically
based datasets are lacking in southern Vietnam (R5-R7)
before 1980. These datasets were collected and provided
by the Vietnam Meteorological and Hydrological Admin-
istration (http://kttvqg.gov.vn/). Soil data used for water
balance and PDSI calculations included the global gridded
(32 × 32 km) soil available water capacity (AWC), also
known as field capacity. It has been shown that PDSI is
sensitive to both AWC and ET (Alley, 1984; van der
Schrier et al., 2006). Here, AWC data were obtained from
and validated using the Harmonized World Soil Database
(FAO/IIASA/ISRIC/ISS-CAS/JRC, 2009).

2.4 | Drought characteristics

In this study, drought events and characteristics at all sta-
tions were identified using calculated monthly PDSI for
the total period of 35 years (1980–2014). Specifically, a
drought event in category Cj shown in (1) is defined as
the period in which PDSI is continuously below a critical
threshold Ωj. Here, Ω2 = −2 and Ω3 = −3 for C2 and C3,
respectively. For each category, we identified and
analysed the following four main drought characteristics
(see Figure 2): duration (Du), frequency (F), inter-arrival
time (T), and severity (S).

• Duration Du of a drought event in a category Cj is identi-
fied as the number of consecutive months in which the
drought index PDSI is below Ωj.

• Inter-arrival time T of droughts is the duration (month)
between the initiation time of two successive drought
events (regardless of the length) in the same drought cate-
gory Cj. It includes the drought and subsequent non-
drought periods. Therefore, T characterizes the timing
variability of drought events.

• Frequency F of droughts in category Cj over a period of
time N (months) is the probability of occurring drought,
calculated as the ratio of total drought duration and the
total time N:

FIGURE 1 Maps of climatic sub-regions in Vietnam and
131 meteorological stations used in this study [Colour figure can be
viewed at wileyonlinelibrary.com]

TABLE 1 Palmer classification of drought severity

Drought severity Intervals Classification

Incipient dry −1 ≤ PDSI < −0.5 Do

Mild drought −2 ≤ PDSI < −1 D1

Moderate drought −3 ≤ PDSI < −2 D2

C
2Severe drought −4 ≤ PDSI < −3 D3 C

3

Extreme drought PDSI < −4 D4
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Fj=
Pm

i=1Dui
N

100%, ð2Þ

where m is the number of drought events in Cj.

• Severity S of a drought event in the category Cj is the
cumulative PDSI drought index during the event:

Sj =
XDu

k=1

PDSIk j PDSIk<Ωj ð3Þ

in which j ≔ {2, 3}.

2.5 | Climate indices

Seasonal variations of drought events in Vietnam are also
influenced by large-scale atmospheric and ocean processes.
While ENSO events do not have a clear effect on drought in the
northern sub-regions, drought (wetness) conditions have been
observed in the southern sub-regions during El Niño (La Niña)
year (Vu-Thanh et al., 2014; Vu et al., 2015). In order to quan-
tify the control of large-scale climate-driven factors on drought
characteristics, the correlations between calculated PDSI and
16 selected climate indices (hereafter referred to as CIs, see
Table 2) reflecting the oscillatory behaviours of climate variabil-
ity at different time scales were analysed. We refer the reader to
the websites (ESRL-PSD, 2018; CPC, 2011) for the detailed
descriptions and temporal data of these climate indices.

2.6 | Trend analysis methods

Tests for the detection of significant trends in time series
data can be classified as parametric and non-parametric
methods. While parametric trend tests require data to be
independent and normally distributed, non-parametric trend
tests only require that the data be independent (Gocic and
Trajkovic, 2014). In order to examine the trends of drought
index, we first used the non-parametric Mann-Kendall

(Mann, 1945; Kendall, 1955) test at 5% significance level to
determine the existence of monotonic trends for the variation
of PDSI. Then, the Sen's slope estimator (Sen, 1968) is used
to determine the magnitude of detected trends.

2.7 | Principle component analysis

It is difficult to directly analyse the spatial and temporal
characteristics of the PDSI dataset at all stations. A neces-
sary step is to reduce the dimensionality of this dataset to as
few modes as possible. Here, the dominant variability of
drought was extracted using a Principle Component Analy-
sis (PCA, see (Abdi and Williams, 2010)) to the calculated
monthly PDSI over 131 stations. PCA is often used for
reducing data dimensionality while retaining dominant
trends and patterns. We briefly summarize PCA as follow.

Given a dataset of n observations of m variables x1, ..., xm
or, equivalently, an n × m matrix X. PCA reduces X by geo-
metrically projecting it onto lower dimensions called principal
components (PCs), with the goal of finding the best summary
of X using a limited number k of PCs (Ringnér, 2008; Lever
et al., 2017). X can be written as a random function of X(t,s) as:

X t,sð Þ=
Xn

i=1

EOFi tð Þ:PCi sð Þ

≈
Xk

i=1

EOFi tð Þ:PCi sð Þ, k≪n, ð4Þ

Du1 Du2 Du3

S2

T1 T2

Time

PDSI = 0

S1 S3

FIGURE 2 Illustration of drought events and characteristics. Du
is duration, T is inter-arrival time, and S is severity [Colour figure can
be viewed at wileyonlinelibrary.com]

TABLE 2 List of 16 climate indices

ID Index Description and data source

1 ONI Oceanic Niño Index

2 SOI Southern Oscillation Index

3 Nino3.4 East Central Tropical Pacific SST

4 MEI Multivariate ENSO Index

5 RINDO_SLPA Equatorial SOI Indonesia SLP
(Standardized Anomalies)

6 CPAC850 850 mb Trade Wind Index Central Pacific

7 REQSOI Equatorial SOI (Standardized Anomalies)

8 WPC850 850 mb Trade Wind Index West Pacific

9 BEST Bivariate ENSO Time Series

10 PDO Pacific Decadal Oscillation

11 DMI Dipole Mode Index

12 TNI Trans-Niño Index

13 PNA Pacific North American Index

14 WHWP Western Hemisphere Warm Pool

15 WP Western Pacific Index

16 QBO Quasi-Biennial Oscillation
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where all k vectors EOFi are orthogonal to each other and
PCT

i ×PCi equals the i
th eigenvalue.

3 | RESULTS AND DISCUSSION

3.1 | Seasonal variability of temperature and
precipitation

The characteristics of climate in Vietnam are influenced by
the annual variations in the atmospheric circulation over
Southeast Asia. Figure 3 shows the annual cycles of the mean
air temperature and rainfall for the 1980–2014 period over
seven climatic sub-regions. The results first indicated strong
and consistent seasonal variations of both air temperature and
rainfall in the northern sub-regions (R1-R3) with the maxi-
mum and minimum values occurring during summer (JJA)
and winter (DJF) time, respectively. Air temperature in R1
was lowest as a result of high topographic elevation compared
to R2-R3. Second, similar patterns of seasonal air temperature
to R1-R3, with larger mean values, were observed in the cen-
tral sub-regions (R4-R5). Nevertheless, there were timing and
magnitude differences in the seasonality of rainfall between
the north and central sub-regions. Unlike R1-R3, rainy sea-
sons in R4-R5 occurred in autumn (SON), accounting for
75–90% of the annual rainfall. Note that the higher mean
monthly air temperature associated with narrow, steep hill
slope topography in the central sub-regions may significantly
reduce the residence time of overland and stream flow. Con-
sequently, soil moisture deficit during spring and summer

time in this area was expected. Finally, seasonal variations of
air temperature and rainfall were much smaller in the Central
Highland (R6) and Southern (R7) sub-regions than others.
Similar to R1, the larger topographic elevation in R6 resulted
in a lower mean air temperature than in R7. While the mean
monthly air temperature in R7 was consistently high through-
out the year, rainfall during late winter time (JFM) was very
low, suggesting that moisture deficit likely happens during
the dry season in this area as well.

3.2 | Seasonal variability of drought

Drought is often associated with seasonality in climate. To
examine the variability of drought events, we first computed
monthly PDSI at all stations and then estimated the annual
cycles of the key drought characteristics. The temporal vari-
ability of sub-regional means of drought frequency F, sever-
ity S, and spatial extent SE for all sub-regions are shown in
Figure 4. The plots generally show an in-phase relation over
most sub-regions, signifying a closed correlation between
these characteristics. Much larger values of F, |S|, and SE
for both C2 and C3 categories were found in R5 compared to
other sub-regions. The largest values of these characteristics
were observed in late spring and early summer time (AMJ).
This is to be expected, due to soil moisture deficit resulting
from the combined effects of high air temperature and very
low amount of rainfall during this period. In contrast, F, |S|,
and SE in R1 were smallest as a result of low mean air tem-
perature and the timing of seasonal rainfall. Interestingly, the

FIGURE 3 Annual cycle of mean air temperature Ta (red lines) and precipitation P (grey bars) over seven climatic sub-regions. Vertical lines
represent ± standard deviation [Colour figure can be viewed at wileyonlinelibrary.com]
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smallest values of F, |S|, and SE of R1 in C2 category were
found coincident with the peak of temperature during hot
summer months (MJJ). Overall, the temporal variability of
S and SE were highly correlated with F and there have been
sub-regional differences in the temporal variability of these
drought characteristics. Moreover, though climate seasonal-
ity was observed in many sub-regions, the annual cycles of
these two drought characteristics were quite uniform
throughout the year, except for R5. The largest values of F,
S, and SE found in R5 and R4, especially for C3. This result

suggests that the seasonal variability of rainfall and tempera-
ture (Figure 3), which controls soil moisture deficit during
spring and summer time, could play important roles in the
mechanisms and formation of drought in these areas.

3.3 | Spatio-temporal patterns of drought

3.3.1 | Interannual variation of PDSI

Figure 5 suggests a spatial pattern of leading modes of vari-
ability in the calculated PDSI. The results indicate that

(a) (b)

(c) (d)

(e) (f)

FIGURE 4 Annual cycles of drought characteristics for C2 and C3 levels in seven climatic sub-regions [Colour figure can be viewed at
wileyonlinelibrary.com]
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EOF1, EOF2, and EOF3 accounted for 26, 11 and 5% of the
total variance, respectively. Collectively, these modes cover
the spatial distribution of drought variability over Vietnam.
We thus restrict our analysis to these first three PCs.
Figure 5a also suggests a regional pattern of PDSI, in which
positive (negative) values reflect the positive (negative) cor-
relation between PDSI and different modes. In addition, the
variational modes of drought over the Northern (R1-R3) and
Southern (R6-R7) regions are similar but they are different
to those in the Central region (R4-R5). Particularly, PC1
shows a distinct drought pattern heavily loaded over the
Northern region, indicating the largest variability of drought
in R1-R3. PC2 reveals a similar pattern of drought variabil-
ity in R6-R7. This result suggests that the variations of
drought in R1-R3 and R6-R7 might be dominated by com-
mon factors at the same periods of wet (May to October)
and dry (November to April) seasons, respectively. The

larger variation of drought in R1-R3 compared to R6-R7
could be attributed to the differences of temperature variabil-
ity in the Northern area (Figure 3). In contrast, PC3 shows a
pattern in which the Central region (R4-R5) exhibits an
opposite trend of drought variation. This might be related to
the difference of climate conditions in R4-R5 compared to
other sub-regions, in which rainy season is shifted to autumn
and winter. Moreover, the region usually experiences a hot
and dry period in summer caused by the foehn phenomenon
at the lee side of Truong Son mountain range during the
Southwest Asian monsoon season. The spatial loading of the
first three leading modes generally suggests that there are
different dominant controls on drought across sub-regions in
Vietnam, including both geographical and circulation
factors.

The temporal variability of EOFs associated with the
leading PCs is shown in Figure 5b. It is observed that

(a)

(b)

(c)

(d)

FIGURE 5 Leading modes of
variability in PDSI. (a) Patterns of the
leading PCs at 131 stations.
(b) Principle component time series
(EOFs) associated with the leading
PCs. (c) Time series of PDSI at
131 stations arranging by sub-
regions. (d) Variation of the Oceanic
Nino Index (ONI) monthly time
series; the grey shade indicates the
threshold SST of ±0.5�C that
categorizes the ENSO phase as El
Niño (red) and La Niña (blue)
[Colour figure can be viewed at
wileyonlinelibrary.com]
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positive (negative) values of EOF1 and EOF2 are associated
with positive (negative) values of PDSI in R1-R3 and
R6-R7, meanwhile positive (negative) values of EOF3 are
linked with negative (positive) values of PDSI in R4-R5
(Figure 5b,c). The opposite signs of EOF1 and EOF2 during
some periods suggest that drought events in the Northern
and Southern areas are not totally in the same phase. This
could be attributed to the differences of large-scale forcing
associated with rainfall mechanisms and temperature
regimes in these sub-regions (Wang and LI, 2004; Huang
et al., 2012; Phan et al., 2009, 2018). A similar situation can
be observed for EOF3 in comparison to EOF1 and EOF2.
Figure 5c shows the variation of C2 drought events detected
by PDSI for all stations across climatic sub-regions. The
results indicate that, most of drought (wetness) events in
R1-R3, northern R4, and R6-R7 are coincident with the
periods in which EOF1 and EOF2 are negative (positive). In
contrast, drought (wetness) events in R5 and southern R4
correspond to positive (negative) values of EOF3
(Figure 5b). Moreover, the interannual variability of PDSI is

in good agreement with the ONI that is often used to identify
ENSO events (Figure 5d). For example, El Niño events in
1986–1988, 1991–1992, 1997–1998, etc. (La Niña events in
1988–1989, 1998–2000, etc.) identified by the ONI's values
greater (less) than 0.5�C (−0.5�C) are reflected by the
corresponding negative (positive) values of EOF1 and
EOF2, and positive (negative) values of the EOF3.

3.3.2 | The spatial distributions of drought
characteristics

The spatial distributions of four drought characteristics for
131 stations during the 1980–2014 period are shown in
Figure 6. The mean duration Du was generally found larger in
the central sub-region (R4-R5) for both C2 and C3. This result
indicates typically longer periods of drought events in R4-R5.
Consequently, frequency F was also found larger there than
other sub-regions. In contrast, the inter-arrival time T was quite
spatially uniform, suggestive of much shorter non-drought
periods in the Central sub-regions (R4-R5). Moreover, severity

FIGURE 6 Spatial distribution of drought characteristics including mean duration Du, interarrival time T, frequency F, and severity S. Note
that the colour bars of T, F, and S are in log-scale [Colour figure can be viewed at wileyonlinelibrary.com]
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S was very large in R4-R5, indicating very high intensity of
drought events in these sub-regions.

To better examine the regional patterns of drought events,
we also identified the sub-regional mean of these four drought
characteristics shown above. Figure 7 shows the sub-regional
mean of frequency F, severity S, duration Du, and inter-arrival
T for C2 and C3 over sub-regions. The results exhibit consis-
tent, regional patterns of these characteristics, except for T in
C2. Here, one should note that F, S, and Du of C2 were longer
than those of C3. This is simply because C3 is a subset of C2.
In addition, the differences between C2 and C3 imply the char-
acteristics of moderate drought (−3 < PDSI < −2) in the tra-
ditional PDSI classification. While F and S decrease
significantly from C2 to C3 for most sub-regions, these per-
centage changes were quite small in R4-R5. This finding con-
firms that drought in the Central sub-regions is often more
severe than in all other areas. Nevertheless, the changes of Du

from C2 to C3 in all sub-regions were not as large as other
drought characteristics. On average, the variability of Du

was the lowest among all characteristics. In general, the
regional patterns of drought characteristics suggest that
different sub-regions have different dominant controls on
drought, including local climatic and large-scale (see
Section 3.5) factors.

3.4 | Trends of drought

The changes in seasonality of drought characteristics also
have important impacts on environment. Figure 8 shows the
trends of seasonal PDSI variations per decade at 131 stations
over the 1980–2014 period. Note that stations with black cir-
cles indicate that p-value <.05. Overall, we detected hetero-
geneity in the historical trends of drought changes across
sub-regions during the study period. Specifically, we found
a decreasing trend of seasonal PDSI in northern sub-regions
(R1-R3), except during summer months (JAS). In contrast, a
significant increasing trend of seasonal PDSI was observed
in the central coast (R4-R5). In other sub-regions, slightly

FIGURE 7 Regional mean of drought characteristics for C2 (grey) and C3 (red) over sub-regions. Dash lines represent average values for
entire mainland Vietnam [Colour figure can be viewed at wileyonlinelibrary.com]
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positive slopes of seasonal PDSI are found, indicating small
changes in drought.

3.5 | Linking PDSI and large-scale drivers

How large-scale processes are related to changes in drought
in Vietnam remains a question. Here, we examined this

relationship by comparing the calculated PDSI time series
with the temporal variation of CIs. The correlation coeffi-
cients (R) between PDSI at each station and each CI are
shown in Figure 9. The results show that PDSI in R6-R7
agrees well with ENSO-related indices (i.e., ONI, SOI,
Nino3.4, MEI, RINDO SLPA, CPAC850, REQSOI,
WPC850, BEST) with |R| at most stations in the range of

FIGURE 8 Sen's slopes of PDSI per decade calculated for 131 stations during the period 1980–2014. Black circles indicate p-value <.05
[Colour figure can be viewed at wileyonlinelibrary.com]
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0.40 � 0.60. Moreover, |R| values in R1-R5 are much
smaller and have opposite signs with those in R6-R7. It
seems that PDSI in R1-R5 is stronger correlated with PNA,

DMI, WHWP, WP, and QBO compared to that in R6-R7.
However, these |R| values are quite small (0.10 � 0.20). Fur-
thermore, the R values between regional mean PDSI and

FIGURE 9 Correlation coefficients between PDSI at each station and 16 climate indices. Black circles indicate p-value <.05 [Colour figure
can be viewed at wileyonlinelibrary.com]
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each CI are presented in Table 3, indicating that drought in
R1-R4 has almost no correlation with CIs reflected by small
values of |R| (0.20 � 0.22). Compared to all other sub-
regions, the Central Highland (R6) and Southern (R7) sub-
regions show quite significant correlations between PDSI
and ENSO-related CIs, with |R| (between regional mean
PDSI and CIs) mostly ranging from 0.33 � 0.40. However,
the correlations between PDSI and DMI, and other indices
such as WP, QBO, PNA, are low. Table 3 further shows the
R values between the CIs and EOFs of the PDSI. The results
imply a good correlation between EOF2, associated with
drought pattern in R6-R7, and ENSO-related CIs with |R|
values mostly range from 0.33 to 0.45. In contrast, EOF3
associated with drought in R1-R3 has no correlation with the
ENSO-related CIs, it rather seems to be correlated with other
CIs such as PNA, DMI, WHWP, WP and QBO. However,
the |R| values are quite small (� 0.1 � 0.2). This discrep-
ancy is attributed to the different influences of large-scale
factors on the rainfall and temperature regimes over these
sub-regions. Despite similar patterns of drought variability,
rainfall and temperature in R6-R7 is dominated by the Asian
summer monsoon which is strongly associated with ENSO
activities (Ju and Slingo, 1995; Kinter et al., 2002; Yan
et al., 2018), meanwhile rainfall in R1-R3 is mainly driven
by the Intertropical Conversion Zone (ITCZ) and/or tropical
cyclone activities (Nguyen-Thi et al., 2012). Moreover,
unlike R6-R7, temperature regime in R1-R3 is strongly

associated with the penetration of cold surges during winter
time that may cause substantail drops in air temperature at
some areas. The correlation between EOF3, associated with
drought pattern in R4-R5, and ENSO-related CIs is quite
similar, but |R| values are much smaller compared to those
of EOF2.

PCA analysis for the CIs shows that the first three modes
contributed 65% of the total variance, including ENSO-
related indices (PC1, 48%), DMI, TNI, PNA, and WHWP
indices (PC2, 9%), and PDO, WP, and QBO indices (PC3,
8%), respectively (not show). The correlation coefficients
between time series of the PCs (also denoted by EOFs) of
the CIs and EOFs of PDSI are shown in Table 4. The results
show that the PDSI's EOF2 correlates quite well with CI's
EOF1, indicating that drought in the R6-R7 is strongly

TABLE 3 Correlation coefficients between CIs and (i) sub-regional mean PDSI, (ii) EOFs of PDSI

CIs

(i) Sub-regional mean PDSI (ii) EOFs of PDSI

R1 R2 R3 R4 R5 R6 R7 EOF1 EOF2 EOF3

ONI 0.055 0.071 0.032 0.077 −0.146 −0.378 −0.437 0.033 −0.408 −0.201

SOI −0.063 −0.053 −0.063 −0.062 0.204 0.303 0.343 −0.043 0.339 0.150

Nino3.4 0.055 0.041 0.015 0.059 −0.116 −0.327 −0.381 0.013 −0.350 −0.173

MEI 0.057 0.061 0.020 −0.028 −0.260 −0.399 −0.422 0.013 −0.442 −0.088

RINDO_SLPA 0.064 0.096 0.059 0.041 −0.275 −0.332 −0.333 0.061 −0.367 −0.074

CPAC850 −0.073 −0.097 −0.066 −0.048 0.159 0.329 0.324 −0.066 0.349 0.128

REQSOI −0.075 −0.134 −0.094 −0.042 0.278 0.375 0.387 −0.088 0.423 0.099

WPC850 −0.039 −0.149 −0.147 −0.162 0.195 0.209 0.310 −0.133 0.277 0.188

BEST 0.075 0.057 0.049 0.079 −0.195 −0.331 −0.401 0.039 −0.375 −0.176

PDO −0.033 0.030 −0.058 −0.142 −0.500 −0.231 −0.250 −0.047 −0.333 0.134

DMI −0.011 −0.165 −0.120 −0.095 0.211 −0.020 0.078 −0.131 0.077 0.010

TNI −0.011 0.023 0.019 −0.150 0.054 0.139 0.368 0.026 0.215 0.295

PNA −0.041 −0.081 −0.125 −0.101 −0.118 −0.061 −0.070 −0.108 −0.084 0.065

WHWP −0.109 −0.229 −0.201 −0.147 −0.059 −0.247 −0.262 −0.236 −0.214 −0.124

WP −0.170 −0.140 −0.078 0.023 0.016 0.017 0.030 −0.123 0.056 −0.099

QBO 0.180 0.126 0.094 0.045 0.021 −0.063 0.022 0.140 −0.053 0.044

Bold text implies values satisfy the significance level of .05 for a two-sided t test.

TABLE 4 Correlation coefficients between principle components
of PDSIs and CIs

CIs

PDSIs

PDSI_EOF1 PDSI_EOF2 PDSI_EOF3

CI_EOF1 0.032 −0.433 −0.152

CI_EOF2 −0.237 0.074 0.09

CI_EOF3 −0.004 −0.159 0.213

Bold text implies values satisfy the significance level of .05 for a two-sided
t test.
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associated with ENSO events (CI's EOF1) and somewhat
with PDO, WP, and QBO (CI's EOF3). While drought in
R1-R3 and northern R4 is partly influenced by the variabil-
ity of DMI, TNI, PNA, and WHWP (CI's EOF2), drought in
the R5 and southern R4 is weakly associated with both CI's
EOF1 and CI's EOF3. In general, the obtained results here
are consistent with those mentioned above.

4 | CONCLUSIONS

In this study, we used the Palmer Drought Severity Index
(PDSI) to analyse the space–time variability of drought over
the mainland Vietnam for the 1980–2014 period. We applied
PCA and statistical tests to analyse the dominant variability
and long-term trends of droughts, and their teleconnections
with large-scale atmospheric and ocean processes. To the
best of our knowledge, this study is the first in the literature
that uses PDSI to examine the spatio-temporal variability of
drought characteristics over Vietnam. This multivariate
approach offers a more realistic assessment of droughts
across climate sub-regions, especially under the context of
anthropogenic global warming that has occurred since the
20th century.

Unlike other drought indices used in previous studies in
Vietnam, PDSI incorporates prior precipitation, moisture
supply, runoff and evaporation demand at the surface level,
which reveals new insights of drought pattern in Vietnam.
We show that drought characteristics vary quite significantly
among sub-regions, exhibiting apparent seasonal variations
and regional patterns. For example, the largest frequency,
intensity, and severity of drought are often observed in the
Central area (R4-R5). This could be partially attributed to
soil moisture deficit associated with low rainfall and high
temperature during summer. Moreover, our results suggest
different trends of drought evolution over sub-regions.
While predominantly decreasing (increasing) trends are
found in the Northern (North Central) sub-regions, changes
in drought in the Southern area are relatively small. Another
key finding is that the linkages between drought in Vietnam
and large-scale drivers are quite different among climatic
sub-regions. While droughts in R6-R7 sub-regions are linked
more strongly with ENSO events, droughts in the remaining
sub-regions are partly influenced by the variability of the
other teleconnection patterns such as DMI, TNI, etc.

The spatial dynamics of PDSI revealed three major pat-
terns of droughts. The first one showed a distinct drought
pattern loaded over the north sub-regions (R1-R3), indicat-
ing the largest variability of drought here. The second pat-
tern indicated opposite variations of droughts between the
Northern (R1-R3) and the Southern (R6-R7) sub-regions.
Finally, the third one suggested that droughts in the Central
sub-regions (R4-R5) was further controlled by local factors,

that is, the foehn effect because the sub-regions are located
on the lee side of a mountain range. These three leading
modes together explain 43% of the drought variability in
Vietnam and imply a combined effects of factors that control
drought over Vietnam, including climate seasonality, large-
scale drivers, and landscape conditions. The results also
indicated that drought variability in the South Central
(R5) and Southern (R6-R7) sub-regions has been highly sen-
sitive to ENSO, suggesting a possibility of early prediction
for drought in these sub-regions.

We believe that the results obtained in this study is an
important step forward to improve the management of
drought impacts in Vietnam, including the local and regional
societal impacts, water resources, agriculture, and the eco-
system response. The PDSI analysis showed high correla-
tions with rainfall and air temperature across Vietnam but
the possibility to combined PDSI with other drought indices
to better represent extreme rainfall and dry conditions in the
region could be explored in future work. Further research
should also be directed toward better understanding the
long-term drivers of drought variability and its propagation
to other types of drought.
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